Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Clin Chim Acta ; 547: 117415, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20230697

ABSTRACT

BACKGROUND: Great concerns have been raised on SARS-CoV-2 impact on men's andrological well-being, and many studies have attempted to determine whether SARS-CoV-2 is present in the semen and till now the data are unclear and somehow ambiguous. However, these studies used quantitative real-time (qRT) PCR, which is not sufficiently sensitive to detect nucleic acids in clinical samples with a low viral load. METHODS: The clinical performance of various nucleic acid detection methods (qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH) was assessed for SARS-CoV-2 using 236 clinical samples from laboratory-confirmed COVID-19 cases. Then, the presence of SARS-CoV-2 in the semen of 12 recovering patients was investigated using qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH in parallel using 24 paired semen, blood, throat swab, and urine samples. RESULTS: The sensitivity and specificity along with AUC of CBPH was markedly higher than the other 3methods. Although qRT-PCR, OSN-qRT-PCR and cdPCR detected no SARS-CoV-2 RNA in throat swab, blood, urine, and semen samples of the 12 patients, CBPH detected the presence of SARS-CoV-2 genome fragments in semen samples, but not in paired urine samples, of 3 of 12 patients. The existing SARS-CoV-2 genome fragments were metabolized over time. CONCLUSIONS: Both OSN-qRT-PCR and cdPCR had better performance than qRT-PCR, and CBPH had the highest diagnostic performance in detecting SARS-CoV-2, which contributed the most improvement to the determination of the critical value in gray area samples with low vrial load, which then provides a rational screening strategy for studying the clearance of coronavirus in the semen over time in patients recovering from COVID-19. Although the presence of SARS-CoV-2 fragments in the semen was demonstrated by CBPH, COVID-19 is unlikely to be sexually transmitted from male partners for at least 3 months after hospital discharge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , SARS-CoV-2/genetics , COVID-19/diagnosis , Semen/chemistry , COVID-19 Testing , Real-Time Polymerase Chain Reaction/methods , RNA, Viral/genetics
2.
China CDC Wkly ; 5(3): 56-62, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2242916

ABSTRACT

What is already known about this topic?: Little is known about the epidemiology, natural history, and transmission patterns of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant. Monitoring the evolution of viral fitness of SARS-CoV-2 in the host population is key for preparedness and response planning. What is added by this report?: We analyzed a successfully contained local outbreak of Delta that took place in Hunan, China, and provided estimates of time-to-key event periods, infectiousness over time, and risk factors for SARS-CoV-2 infection and transmission for a still poorly understood variant. What are the implications for public health practice?: Our findings simultaneously shed light on both the characteristics of the Delta variant, by identifying key age groups, risk factors, and transmission pathways, and planning a future response effort against SARS-CoV-2.

3.
Infect Dis Model ; 8(1): 203-211, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2179302

ABSTRACT

Since the epidemic of the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), many governments have used reverse transcription polymerase chain reaction (RT-PCR) to detect the virus. However, there are fewer measures of CT values information based on RT-PCR results, and the relationship between CT values and factors from consecutive tests is not clear enough. So in this study, we analyzed the connection between CT values and the factors based on cohort data from Delta variant of SARS-CoV-2 in Hunan Province. Previous studies have showed that the mean age of the cases was 33.34 years (±18.72 years), with a female predominance (55.03%, n = 71), and the greatest proportion of clinical symptoms were of the common type (60.47%, n = 78). There were statistical differences between the N and ORF1ab genes in the CT values for the cases. Based on the analysis of the association between CT values and the factors, the lowest CT values were obtained for the unvaccinated, older and clinically symptomatic group at 3-10 days, the maximum peak of viral load occurred. Therefore, it is recommended to use patient information to focus on older, clinically symptomatic, unvaccinated patients and to intervene promptly upon admission.

4.
Infect Dis Model ; 8(1): 192-202, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2179301

ABSTRACT

Background: The current outbreak of novel coronavirus disease 2019 has caused a serious disease burden worldwide. Vaccines are an important factor to sustain the epidemic. Although with a relatively high-vaccination worldwide, the decay of vaccine efficacy and the arising of new variants lead us to the challenge of maintaining a sufficient immune barrier to protect the population. Method: A case-contact tracking data in Hunan, China, is used to estimate the contact pattern of cases for scenarios including school, workspace, etc, rather than ordinary susceptible population. Based on the estimated vaccine coverage and efficacy, a multi-group vaccinated-exposed-presymptomatic-symptomatic-asymptomatic-removed model (VEFIAR) with 8 age groups, with each partitioned into 4 vaccination status groups is developed. The optimal dose-wise vaccinating strategy is optimized based on the currently estimated immunity barrier of coverage and efficacy, using the greedy algorithm that minimizes the cumulative cases, population size of hospitalization and fatality respectively in a certain future interval. Parameters of Delta and Omicron variants are used respectively in the optimization. Results: The estimated contact matrices of cases showed a concentration on middle ages, and has compatible magnitudes compared to estimations from contact surveys in other studies. The VEFIAR model is numerically stable. The optimal controled vaccination strategy requires immediate vaccination on the un-vaccinated high-contact population of age 30-39 to reduce the cumulative cases, and is stable with different basic reproduction numbers ( R 0 ). As for minimizing hospitalization and fatality, the optimized strategy requires vaccination on the un-vaccinated of both aged 30-39 of high contact frequency and the vulnerable older. Conclusion: The objective of reducing transmission requires vaccination in age groups of the highest contact frequency, with more priority for un-vaccinated than un-fully or fully vaccinated. The objective of reducing total hospitalization and fatality requires not only to reduce transmission but also to protect the vulnerable older. The priority changes by vaccination progress. For any region, if the local contact pattern is available, then with the vaccination coverage, efficacy, and disease characteristics of relative risks in heterogeneous populations, the optimal dose-wise vaccinating process will be obtained and gives hints for decision-making.

5.
Front Cell Infect Microbiol ; 12: 1010683, 2022.
Article in English | MEDLINE | ID: covidwho-2121151

ABSTRACT

The outbreak of the novel coronavirus disease 2019 (COVID-19) has had an unprecedented impact worldwide, and it is of great significance to predict the prognosis of patients for guiding clinical management. This study aimed to construct a nomogram to predict the prognosis of COVID-19 patients. Clinical records and laboratory results were retrospectively reviewed for 331 patients with laboratory-confirmed COVID-19 from Huangshi Hospital of Traditional Chinese Medicine (TCM) (Infectious Disease Hospital) and Third Affiliated Hospital of Sun Yat-sen University. All COVID-19 patients were followed up for 80 days, and the primary outcome was defined as patient death. Cases were randomly divided into training (n=199) and validation (n=132) groups. Based on baseline data, we used statistically significant prognostic factors to construct a nomogram and assessed its performance. The patients were divided into Death (n=23) and Survival (n=308) groups. Analysis of clinical characteristics showed that these patients presented with fever (n=271, 81.9%), diarrhea (n=20, 6.0%) and had comorbidities (n=89, 26.9.0%). Multivariate Cox regression analysis showed that age, UREA and LDH were independent risk factors for predicting 80-day survival of COVID-19 patients. We constructed a qualitative nomogram with high C-indexes (0.933 and 0.894 in the training and validation groups, respectively). The calibration curve for 80-day survival showed optimal agreement between the predicted and actual outcomes. Decision curve analysis revealed the high clinical net benefit of the nomogram. Overall, our nomogram could effectively predict the 80-day survival of COVID-19 patients and hence assist in providing optimal treatment and decreasing mortality rates.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Multivariate Analysis , Nomograms , Prognosis , Retrospective Studies
6.
Immunity ; 55(8): 1501-1514.e3, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1885835

ABSTRACT

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Monoclonal , Antibodies, Viral , COVID-19 Vaccines , Humans , Membrane Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
7.
J Hazard Mater ; 425: 128051, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1561920

ABSTRACT

The number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase worldwide, but despite extensive research, there remains significant uncertainty about the predominant routes of SARS-CoV-2 transmission. We conducted a mechanistic modeling and calculated the exposure dose and infection risk of each passenger in a two-bus COVID-19 outbreak in Hunan province, China. This outbreak originated from a single pre-symptomatic index case. Some human behavioral data related to exposure including boarding and alighting time of some passengers and seating position and mask wearing of all passengers were obtained from the available closed-circuit television images/clips and/or questionnaire survey. Least-squares fitting was performed to explore the effect of effective viral load on transmission risk, and the most likely quanta generation rate was also estimated. This study reveals the leading role of airborne SARS-CoV-2 transmission and negligible role of fomite transmission in a poorly ventilated indoor environment, highlighting the need for more targeted interventions in such environments. The quanta generation rate of the index case differed by a factor of 1.8 on the two buses and transmission occurred in the afternoon of the same day, indicating a time-varying effective viral load within a short period of five hours.


Subject(s)
Air Microbiology , COVID-19 , Fomites/virology , Motor Vehicles , SARS-CoV-2 , COVID-19/transmission , Disease Outbreaks , Humans
8.
Front Med (Lausanne) ; 8: 735779, 2021.
Article in English | MEDLINE | ID: covidwho-1470760

ABSTRACT

Objectives: To data, no patients with obvious epidemiological relationship co-infected with SARS-CoV-2 and other pathogens have been reported. Here, we investigated 10 patients caused by co-infection with SARS-CoV-2 and human adenovirus (HAdV), resulting in third-generation transmission. Materials and Methods: From Jan 15, 2020, we enrolled 10 patients with pneumonia in Hunan Province, China. Epidemiological, clinical, and laboratory investigation results from these patients were analyzed. An epidemiological investigation was performed to assess whether patient infections were linked using conventional methods and metagenomic sequencing. Results: The presence of co-infection with SARS-CoV-2 and HAdV was determined via RT-PCR and metagenomic sequencing. Phylogenetic analysis revealed that SARS-CoV-2 and HAdV genomes clustered together, with similar genetic relationships. The first patient likely became co-infected during meetings or travel in Wuhan. The patient transmitted the virus via dinners and meetings, which resulted in four second-generation cases. Then, a second-generation case transmitted the virus to her family members or relatives via presymptomatic transmission. Conclusions: This study described an example of co-infection with SARS-CoV-2 and HAdV in pneumonia patients, which caused third-generation cases and inter-regional transmission via meetings, household interactions, and dinner parties. We also observed the persistent and presymptomatic transmission of co-infection, which has the potential to make the continued control of the COVID-19 pandemic challenging. Continuous surveillance is needed to monitor the prevalence, infectivity, transmissibility, and pathogenicity of SARS-CoV-2 co-infection with other pathogens to evaluate its real risk.

9.
Build Environ ; 207: 108414, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1446479

ABSTRACT

Uncertainty remains on the threshold of ventilation rate in airborne transmission of SARS-CoV-2. We analyzed a COVID-19 outbreak in January 2020 in Hunan Province, China, involving an infected 24-year-old man, Mr. X, taking two subsequent buses, B1 and B2, in the same afternoon. We investigated the possibility of airborne transmission and the ventilation conditions for its occurrence. The ventilation rates on the buses were measured using a tracer-concentration decay method with the original driver on the original route. We measured and calculated the spread of the exhaled virus-laden droplet tracer from the suspected index case. Ten additional passengers were found to be infected, with seven of them (including one asymptomatic) on B1 and two on B2 when Mr. X was present, and one passenger infected on the subsequent B1 trip. B1 and B2 had time-averaged ventilation rates of approximately 1.7 and 3.2 L/s per person, respectively. The difference in ventilation rates and exposure time could explain why B1 had a higher attack rate than B2. Airborne transmission due to poor ventilation below 3.2 L/s played a role in this two-bus outbreak of COVID-19.

11.
Virol Sin ; 36(6): 1484-1491, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1359969

ABSTRACT

The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003, and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available; thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain (RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensin-converting enzyme 2 (ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Escherichia coli/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Protein Binding , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
13.
Nat Commun ; 12(1): 1533, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1125484

ABSTRACT

Several mechanisms driving SARS-CoV-2 transmission remain unclear. Based on individual records of 1178 potential SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China, we estimated key transmission parameters. The mean generation time was estimated to be 5.7 (median: 5.5, IQR: 4.5, 6.8) days, with infectiousness peaking 1.8 days before symptom onset, with 95% of transmission events occurring between 8.8 days before and 9.5 days after symptom onset. Most transmission events occurred during the pre-symptomatic phase (59.2%). SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not significantly different between age groups and between symptomatic and asymptomatic individuals. Contacts in households and exposure to first-generation cases are associated with higher odds of transmission. Our findings support the hypothesis that children can effectively transmit SARS-CoV-2 and highlight how pre-symptomatic and asymptomatic transmission can hinder control efforts.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Contact Tracing , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Disease Susceptibility , Family Characteristics , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
14.
Reprod Biomed Online ; 42(3): 589-594, 2021 03.
Article in English | MEDLINE | ID: covidwho-955942

ABSTRACT

RESEARCH QUESTION: What are the risks associated with cryopreserved semen collected during and after the coronavirus disease 2019 (COVID-19) pandemic wave in Wuhan, China? DESIGN: Retrospective cohort study involving young adult men who were qualified sperm donors at the Hunan Province Human Sperm Bank (China) during the pandemic wave (1 January 2020 to 30 January 2020) and after the wave and return to work (7 April 2020 to 30 May 30 2020). One hundred paired semen and blood specimens from 100 donors were included. One-step single-tube nested quantitative real-time polymerase chain reaction (OSN-qRT-PCR) was used to detect SARS-CoV-2. Moreover, to control the unacceptable risk of false-negative results, a second round of screening was performed with pooled RNA from negative semen samples using crystal digital PCR (cd-PCR). RESULTS: For individual blood and semen samples, the target genes, namely the nucleocapsid protein (N) and open reading frame (ORF-1ab) genes, tested negative in all of the 100 paired samples. Further, as per cd-PCR results, there were >20,000 droplets per well in the RNA for each combined sample and no positive droplets were present for either of the aforementioned target genes. A total of 100 paired semen and blood samples from these two groups tested negative for SARS-CoV-2. CONCLUSIONS: Cryopreserved semen at the Hunan Province Human Sperm Bank during and after the COVID-19 pandemic wave was free of SARS-CoV-2 and was judged safe for external use in the future.


Subject(s)
COVID-19 , Pandemics , China/epidemiology , Humans , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2 , Semen , Sperm Banks , Spermatozoa , Young Adult
15.
Open Forum Infect Dis ; 7(10): ofaa430, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-756946

ABSTRACT

Here we report a case study of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak event during bus trips of an index patient in Hunan Province, China. This retrospective investigation suggests potential airborne transmission of SARS-CoV-2 and the possibility of superspreading events in certain close contact and closed space settings, which should be taken into account when control strategies are planned.

16.
Infect Dis Poverty ; 9(1): 117, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-730583

ABSTRACT

BACKGROUND: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also called 2019-nCoV) causes different morbidity risks to individuals in different age groups. This study attempts to quantify the age-specific transmissibility using a mathematical model. METHODS: An epidemiological model with five compartments (susceptible-exposed-symptomatic-asymptomatic-recovered/removed [SEIAR]) was developed based on observed transmission features. Coronavirus disease 2019 (COVID-19) cases were divided into four age groups: group 1, those ≤ 14 years old; group 2, those 15 to 44 years old; group 3, those 45 to 64 years old; and group 4, those ≥ 65 years old. The model was initially based on cases (including imported cases and secondary cases) collected in Hunan Province from January 5 to February 19, 2020. Another dataset, from Jilin Province, was used to test the model. RESULTS: The age-specific SEIAR model fitted the data well in each age group (P < 0.001). In Hunan Province, the highest transmissibility was from age group 4 to 3 (median: ß43 = 7.71 × 10- 9; SAR43 = 3.86 × 10- 8), followed by group 3 to 4 (median: ß34 = 3.07 × 10- 9; SAR34 = 1.53 × 10- 8), group 2 to 2 (median: ß22 = 1.24 × 10- 9; SAR22 = 6.21 × 10- 9), and group 3 to 1 (median: ß31 = 4.10 × 10- 10; SAR31 = 2.08 × 10- 9). The lowest transmissibility was from age group 3 to 3 (median: ß33 = 1.64 × 10- 19; SAR33 = 8.19 × 10- 19), followed by group 4 to 4 (median: ß44 = 3.66 × 10- 17; SAR44 = 1.83 × 10- 16), group 3 to 2 (median: ß32 = 1.21 × 10- 16; SAR32 = 6.06 × 10- 16), and group 1 to 4 (median: ß14 = 7.20 × 10- 14; SAR14 = 3.60 × 10- 13). In Jilin Province, the highest transmissibility occurred from age group 4 to 4 (median: ß43 = 4.27 × 10- 8; SAR43 = 2.13 × 10- 7), followed by group 3 to 4 (median: ß34 = 1.81 × 10- 8; SAR34 = 9.03 × 10- 8). CONCLUSIONS: SARS-CoV-2 exhibits high transmissibility between middle-aged (45 to 64 years old) and elderly (≥ 65 years old) people. Children (≤ 14 years old) have very low susceptibility to COVID-19. This study will improve our understanding of the transmission feature of SARS-CoV-2 in different age groups and suggest the most prevention measures should be applied to middle-aged and elderly people.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Betacoronavirus/isolation & purification , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
17.
medRxiv ; 2020 Nov 03.
Article in English | MEDLINE | ID: covidwho-721054

ABSTRACT

Several mechanisms driving SARS-CoV-2 transmission remain unclear. Based on individual records of 1,178 SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China, we estimated key transmission parameters. The mean generation time was estimated to be 5.7 (median: 5.5, IQR: 4.5, 6.8) days, with infectiousness peaking 1.8 days before symptom onset, with 95% of transmission events occurring between 8.8 days before and 9.5 days after symptom onset. Most of transmission events occurred during the pre-symptomatic phase (59.2%). SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not significantly different between age groups and between symptomatic and asymptomatic individuals. Contacts in households and exposure to first-generation cases are associated with higher odds of transmission. Our findings support the hypothesis that children can effectively transmit SARS-CoV-2 and highlight how pre-symptomatic and asymptomatic transmission can hinder control efforts.

SELECTION OF CITATIONS
SEARCH DETAIL